
Sanic Babel Documentation
Release 0.3.0

Lix Xu

May 11, 2021

Contents

1 Installation 3

2 Configuration 5

3 Formatting Dates 7

4 Using Translations 9

5 Translating Applications 11

6 Troubleshooting 13

7 API 15
7.1 Configuration . 15
7.2 Context Functions . 16
7.3 Datetime Functions . 16
7.4 Gettext Functions . 17
7.5 Low-Level API . 17

Python Module Index 19

Index 21

i

ii

Sanic Babel Documentation, Release 0.3.0

NOTICE: Most of the codes are from flask-babel, and updated to match Sanic.

sanic-babel is an extension to Sanic that adds i18n and l10n support to any Sanic application with the help of babel,
pytz and speaklater. It has builtin support for date formatting with timezone support as well as a very simple and
friendly interface to gettext translations.

Contents 1

http://github.com/mitsuhiko/flask-babel
https://github.com/channelcat/sanic
https://github.com/channelcat/sanic
http://babel.edgewall.org/
http://pytz.sourceforge.net/
http://pypi.python.org/pypi/speaklater
https://docs.python.org/3/library/gettext.html#module-gettext

Sanic Babel Documentation, Release 0.3.0

2 Contents

CHAPTER 1

Installation

Install the extension with one of the following commands:

$ python3 -m pip install sanic-babel

or alternatively:

$ pip3 install sanic-babel

Please note that sanic-babel requires Jinja 2.5. If you are using an older version you will have to upgrade or disable
the Jinja support.

3

Sanic Babel Documentation, Release 0.3.0

4 Chapter 1. Installation

CHAPTER 2

Configuration

To get started all you need to do is to instanciate a Babel object after configuring the application:

from sanic import Sanic
from sanic_babel import Babel

app = Sanic(__name__)
app.config.from_pyfile('mysettings.cfg')
babel = Babel(app, configure_jinja=False)
or if app.ctx.jinja_env already there
babel = Babel(app)

The babel object itself can be used to configure the babel support further. Babel has two configuration values that can
be used to change some internal defaults:

BA-
BEL_DEFAULT_LOCALE

The default locale to use if no locale selector is registered. This defaults to 'en'.

BA-
BEL_DEFAULT_TIMEZONE

The timezone to use for user facing dates. This defaults to 'UTC' which also is the
timezone your application must use internally.

For more complex applications you might want to have multiple applications for different users which is where
selector functions come in handy. The first time the babel extension needs the locale (language code) of the cur-
rent user it will call a localeselector() function, and the first time the timezone is needed it will call a
timezoneselector() function.

If any of these methods return None the extension will automatically fall back to what’s in the config. Furthermore
for efficiency that function is called only once and the return value then cached. If you need to switch the language
between a request, you can refresh() the cache.

Example selector functions:

@babel.localeselector
def get_locale(request):

if a user is logged in, use the locale from the user settings

(continues on next page)

5

Sanic Babel Documentation, Release 0.3.0

(continued from previous page)

if request['current_user'] is not None:
return request['current_user'].lang

otherwise try to guess the language from the user accept
header the browser transmits. The first wins.
langs = request.headers.get('accept-language')
if langs:

return langs.split(';')[0].split(',')[0].replace('-', '_')

@babel.timezoneselector
def get_timezone(request):

if request['current_user'] is not None:
return request['current_user'].timezone

The example above assumes that the current user is stored on the request object as key name of current_user.

6 Chapter 2. Configuration

CHAPTER 3

Formatting Dates

To format dates you can use the format_datetime(), format_date(), format_time() and
format_timedelta() functions. They all accept a datetime.datetime (or datetime.date,
datetime.time and datetime.timedelta) object as first parameter and then optionally a format string. The
application should use naive datetime objects internally that use UTC as timezone. On formatting it will automatically
convert into the user’s timezone in case it differs from UTC.

To play with the date formatting from the console, you can use the SanicTestClient:

>>> app = Sanic('test_text')
>>> @app.route('/')
>>> async def handler(request):
>>> return text('Hello')
>>> request, response = app.test_client.get('/')

Here some examples:

>>> from sanic_babel import Babel, format_datetime
>>> from datetime import datetime
>>> babel = Babel(app, configure_jinja=False)
>>> format_datetime(datetime(1987, 3, 5, 17, 12), request=request)
'Mar 5, 1987 5:12:00 PM'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'full', request=request)
'Thursday, March 5, 1987 5:12:00 PM World (GMT) Time'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'short', request=request)
'3/5/87 5:12 PM'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'dd mm yyy', request=request)
'05 12 1987'
>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'dd mm yyyy', request=request)
'05 12 1987'

And again with a different language:

>>> app.config['BABEL_DEFAULT_LOCALE'] = 'de'
>>> from sanic_babel import refresh; refresh(request)

(continues on next page)

7

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Sanic Babel Documentation, Release 0.3.0

(continued from previous page)

>>> format_datetime(datetime(1987, 3, 5, 17, 12), 'EEEE, d. MMMM yyyy H:mm',
→˓request=request)
'Donnerstag, 5. März 1987 17:12'

For more format examples head over to the babel documentation.

8 Chapter 3. Formatting Dates

http://babel.edgewall.org/

CHAPTER 4

Using Translations

The other big part next to date formatting are translations. For that, Flask uses gettext together with Babel. The
idea of gettext is that you can mark certain strings as translatable and a tool will pick all those up, collect them in a
separate file for you to translate. At runtime the original strings (which should be English) will be replaced by the
language you selected.

There are two functions responsible for translating: gettext() and ngettext(). The first to translate singular
strings and the second to translate strings that might become plural. Here some examples:

from sanic_babel import gettext, ngettext

gettext('A simple string', request=request)
gettext('Value: %(value)s', value=42, request=request)
ngettext('%(num)s Apple', '%(num)s Apples', number_of_apples, request=request)

NOTICE: If you’re using sanic-jinja2, the gettext and ngettext are already partial functions with request when used in
templates, so no need to pass request when using them in templates.

Additionally if you want to use constant strings somewhere in your application and define them outside of a request,
you can use a lazy strings. Lazy strings will not be evaluated until they are actually used. To use such a lazy string,
use the lazy_gettext() function:

from sanic_babel import lazy_gettext

class MyForm(formlibrary.FormBase):
success_message = lazy_gettext('The form was successfully saved.')

in the other file that needs actual lazy string
@app.route('/')
async def index(request):

s = str(success_message(request))
or
success_message(request)
s = str(success_message)
return text(s)

9

https://docs.python.org/3/library/gettext.html#module-gettext
http://github.com/lixxu/sanic-jinja2

Sanic Babel Documentation, Release 0.3.0

NOTICE: lazy_gettext() needs request before accessing actual string value. You can use str(lazy_text(request))
or call lazy_text(request) once, then you can do others like flask-babel.

So how does sanic-babel find the translations? Well first you have to create some. Here is how you do it:

10 Chapter 4. Using Translations

CHAPTER 5

Translating Applications

First you need to mark all the strings you want to translate in your application with gettext() or ngettext().
After that, it’s time to create a .pot file. A .pot file contains all the strings and is the template for a .po file which
contains the translated strings. Babel can do all that for you.

First of all you have to get into the folder where you have your application and create a mapping file. For typical Flask
applications, this is what you want in there:

[python: **.py]
[jinja2: **/templates/**.html]
extensions=jinja2.ext.autoescape,jinja2.ext.with_

Save it as babel.cfg or something similar next to your application. Then it’s time to run the pybabel command that
comes with Babel to extract your strings:

$ pybabel extract -F babel.cfg -o messages.pot .

If you are using the lazy_gettext() function you should tell pybabel that it should also look for such function
calls:

$ pybabel extract -F babel.cfg -k lazy_gettext -o messages.pot .

This will use the mapping from the babel.cfg file and store the generated template in messages.pot. Now we
can create the first translation. For example to translate to German use this command:

$ pybabel init -i messages.pot -d translations -l de

-d translations tells pybabel to store the translations in this folder. This is where Flask-Babel will look for
translations. Put it next to your template folder.

Now edit the translations/de/LC_MESSAGES/messages.po file as needed. Check out some gettext tuto-
rials if you feel lost.

To compile the translations for use, pybabel helps again:

11

Sanic Babel Documentation, Release 0.3.0

$ pybabel compile -d translations

What if the strings change? Create a new messages.pot like above and then let pybabel merge the changes:

$ pybabel update -i messages.pot -d translations

Afterwards some strings might be marked as fuzzy (where it tried to figure out if a translation matched a changed key).
If you have fuzzy entries, make sure to check them by hand and remove the fuzzy flag before compiling.

12 Chapter 5. Translating Applications

CHAPTER 6

Troubleshooting

On Snow Leopard pybabel will most likely fail with an exception. If this happens, check if this command outputs
UTF-8:

$ echo $LC_CTYPE
UTF-8

This is a OS X bug unfortunately. To fix it, put the following lines into your ~/.profile file:

export LC_CTYPE=en_US.utf-8

Then restart your terminal.

13

Sanic Babel Documentation, Release 0.3.0

14 Chapter 6. Troubleshooting

CHAPTER 7

API

This part of the documentation documents each and every public class or function from Flask-Babel.

7.1 Configuration

class sanic_babel.Babel(app=None, default_locale=’en’, default_timezone=’UTC’,
date_formats=None, configure_jinja=True)

Central controller class that can be used to configure how sanic-babel behaves. Each application that wants
to use sanic-babel has to create, or run init_app() on, an instance of this class after the configuration was
initialized.

default_locale
The default locale from the configuration as instance of a babel.Locale object.

default_timezone
The default timezone from the configuration as instance of a pytz.timezone object.

init_app(app)
Set up this instance for use with app, if no app was passed to the constructor.

list_translations()
Returns a list of all the locales translations exist for. The list returned will be filled with actual locale
objects and not just strings.

localeselector(f)
Registers a callback function for locale selection. The default behaves as if a function was registered that
returns None all the time. If None is returned, the locale falls back to the one from the configuration.

This has to return the locale as string (eg: 'de_AT', ‘’en_US”)

timezoneselector(f)
Registers a callback function for timezone selection. The default behaves as if a function was registered
that returns None all the time. If None is returned, the timezone falls back to the one from the configuration.

This has to return the timezone as string (eg: 'Europe/Vienna')

15

Sanic Babel Documentation, Release 0.3.0

7.2 Context Functions

sanic_babel.get_translations(request=None)
Returns the correct gettext translations that should be used for this request. This will never fail and return a
dummy translation object if used outside of the request or if a translation cannot be found.

sanic_babel.get_locale(request=None)
Returns the locale that should be used for this request as babel.Locale object. This returns Locale.parse(‘en’) if
used outside of a request.

sanic_babel.get_timezone(request=None)
Returns the timezone that should be used for this request as pytz.timezone object. This returns UTC if used
outside of a request.

7.3 Datetime Functions

sanic_babel.to_user_timezone(datetime, request=None)
Convert a datetime object to the user’s timezone. This automatically happens on all date formatting unless
rebasing is disabled. If you need to convert a datetime.datetime object at any time to the user’s timezone
(as returned by get_timezone() this function can be used).

sanic_babel.to_utc(datetime, request=None)
Convert a datetime object to UTC and drop tzinfo. This is the opposite operation to to_user_timezone().

sanic_babel.format_datetime(datetime=None, format=None, rebase=True, request=None)
Return a date formatted according to the given pattern. If no datetime object is passed, the current time
is assumed. By default rebasing happens which causes the object to be converted to the users’s timezone (as
returned by to_user_timezone()). This function formats both date and time.

The format parameter can either be 'short', 'medium', 'long' or 'full' (in which cause the lan-
guage’s default for that setting is used, or the default from the Babel.date_formats mapping is used) or a
format string as documented by Babel.

This function is also available in the template context as filter named datetimeformat.

sanic_babel.format_date(date=None, format=None, rebase=True, request=None)
Return a date formatted according to the given pattern. If no datetime or date object is passed, the current
time is assumed. By default rebasing happens which causes the object to be converted to the users’s timezone
(as returned by to_user_timezone()). This function only formats the date part of a datetime object.

The format parameter can either be 'short', 'medium', 'long' or 'full' (in which cause the lan-
guage’s default for that setting is used, or the default from the Babel.date_formats mapping is used) or a
format string as documented by Babel.

This function is also available in the template context as filter named dateformat.

sanic_babel.format_time(time=None, format=None, rebase=True, request=None)
Return a time formatted according to the given pattern. If no datetime object is passed, the current time
is assumed. By default rebasing happens which causes the object to be converted to the users’s timezone (as
returned by to_user_timezone()). This function formats both date and time.

The format parameter can either be 'short', 'medium', 'long' or 'full' (in which cause the lan-
guage’s default for that setting is used, or the default from the Babel.date_formats mapping is used) or a
format string as documented by Babel.

This function is also available in the template context as filter named timeformat.

16 Chapter 7. API

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Sanic Babel Documentation, Release 0.3.0

sanic_babel.format_timedelta(datetime_or_timedelta, granularity=’second’,
add_direction=False, threshold=0.85, request=None)

Format the elapsed time from the given date to now or the given timedelta.

This function is also available in the template context as filter named timedeltaformat.

7.4 Gettext Functions

sanic_babel.gettext(string, request=None, **variables)
Translates a string with the current locale and passes in the given keyword arguments as mapping to a string
formatting string.

gettext('Hello World!', request)
gettext('Hello %(name)s!', request, name='World')

sanic_babel.ngettext(singular, plural, num, request=None, **variables)
Translates a string with the current locale and passes in the given keyword arguments as mapping to a string
formatting string. The num parameter is used to dispatch between singular and various plural forms of the
message. It is available in the format string as %(num)d or %(num)s. The source language should be English
or a similar language which only has one plural form.

ngettext('%(num)d Apple', '%(num)d Apples', request=request,
num=len(apples))

sanic_babel.pgettext(context, string, request=None, **variables)
Like gettext() but with a context.

sanic_babel.npgettext(context, singular, plural, num, request=None, **variables)
Like ngettext() but with a context.

sanic_babel.lazy_gettext(string, **variables)
Like gettext() but the string returned is lazy which means it will be translated when it is used as an actual
string.

NOTE: As sanic does not provide something like ctx_stack, the lazy object should call with request before using
as an actual string.

Example:

hello = lazy_gettext('Hello World')

@app.route('/')
def index(request):

return str(hello(request))

sanic_babel.lazy_pgettext(context, string, **variables)
Like pgettext() but the string returned is lazy which means it will be translated when it is used as an actual
string.

7.5 Low-Level API

sanic_babel.refresh(request=None)
Refreshes the cached timezones and locale information. This can be used to switch a translation between a
request and if you want the changes to take place immediately, not just with the next request:

7.4. Gettext Functions 17

Sanic Babel Documentation, Release 0.3.0

user.timezone = request.form['timezone']
user.locale = request.form['locale']
refresh(request)
jinja.flash(gettext('Language was changed', request))

NOTICE: jinja.flash() function is from sanic-jinja2 package.

Without that refresh, the jinja.flash() function would probably return English text and a now German
page.

sanic_babel.force_locale(*args, **kwds)
Temporarily overrides the currently selected locale.

Sometimes it is useful to switch the current locale to different one, do some tasks and then revert back to the
original one. For example, if the user uses German on the web site, but you want to send them an email in
English, you can use this function as a context manager:

with force_locale('en_US', request):
send_email(gettext('Hello!', request), ...)

Parameters

• locale – The locale to temporary switch to (ex: ‘en_US’).

• request – the current Request object

18 Chapter 7. API

Python Module Index

s
sanic_babel, ??

19

Sanic Babel Documentation, Release 0.3.0

20 Python Module Index

Index

B
Babel (class in sanic_babel), 15

D
default_locale (sanic_babel.Babel attribute), 15
default_timezone (sanic_babel.Babel attribute), 15

F
force_locale() (in module sanic_babel), 18
format_date() (in module sanic_babel), 16
format_datetime() (in module sanic_babel), 16
format_time() (in module sanic_babel), 16
format_timedelta() (in module sanic_babel), 16

G
get_locale() (in module sanic_babel), 16
get_timezone() (in module sanic_babel), 16
get_translations() (in module sanic_babel), 16
gettext() (in module sanic_babel), 17

I
init_app() (sanic_babel.Babel method), 15

L
lazy_gettext() (in module sanic_babel), 17
lazy_pgettext() (in module sanic_babel), 17
list_translations() (sanic_babel.Babel

method), 15
localeselector() (sanic_babel.Babel method), 15

N
ngettext() (in module sanic_babel), 17
npgettext() (in module sanic_babel), 17

P
pgettext() (in module sanic_babel), 17

R
refresh() (in module sanic_babel), 17

S
sanic_babel (module), 1

T
timezoneselector() (sanic_babel.Babel method),

15
to_user_timezone() (in module sanic_babel), 16
to_utc() (in module sanic_babel), 16

21

	Installation
	Configuration
	Formatting Dates
	Using Translations
	Translating Applications
	Troubleshooting
	API
	Configuration
	Context Functions
	Datetime Functions
	Gettext Functions
	Low-Level API

	Python Module Index
	Index

